The structure and strength properties of Kerto® LVL products offer a significant advantage to design beams with holes. Especially the crossveneer structure of Kerto LVL Q-panel acts as an reinforcement around the holes preventing cracking due to tension stresses perpendicular to the grain. The excellent resistance against cracking allows designing of large rectangular and round holes on Q-panel products.

SIZE AND LOCATION OF THE HOLES

In figure 1 and 2 are shown the general symbols to define the size and location of the holes.

Figure 1. Definitions related to round holes.

Figure 2. Definitions related to rectangular holes.

The design methods given in this document can be used when the following requirements 1 – 10 are fulfilled. Requirements are the same for both Kerto LVL S-beam and Kerto LVL Q-beam products.

General requirements for round and rectangular holes:

\[L_V \geq h \] \hspace{1cm} (1)

\[L_A \geq 0.5h \] \hspace{1cm} (2)

Additional requirements for round holes:

\[d \leq 0.7h \] \hspace{1cm} (3)

\[L_Z \geq \max \left\{ \frac{0.5h}{2.0d} \right\} \] \hspace{1cm} (4)

In addition, when the centre of the hole is located on the neutral axis of the beam

\[h_{ro} \text{ and } h_{ru} \geq 0.15h \] \hspace{1cm} (5)

or when the centre of the hole is not located on the neutral axis of the beam

\[h_{ro} \text{ and } h_{ru} \geq 0.25h \] \hspace{1cm} (6)

Additional requirements for rectangular holes:

\[a \leq 1.3h \] \hspace{1cm} (7)

\[h_d \leq 0.3h \] \hspace{1cm} (8)

\[h_{ro} \text{ and } h_{ru} \geq 0.35h \] \hspace{1cm} (9)

\[L_Z \geq 1.5h \] \hspace{1cm} (10)

And the radius of curvature at each corner of the hole shall be minimum 15 mm.
DESIGN TABLES FOR HOLES

TABLE 1. GEOMETRICAL LIMITATIONS FOR ROUND HOLES IN S-BEAM AND Q-PANEL PRODUCTS.

<table>
<thead>
<tr>
<th>BEAM DEPTH h [mm]</th>
<th>DISTANCE FROM THE BEAM END L_1 min [mm]</th>
<th>DISTANCE FROM THE SUPPORT L_4 min [mm]</th>
<th>CENTRE OF THE HOLE ON NEUTRAL AXIS</th>
<th>CENTRE OF THE HOLE NOT ON NEUTRAL AXIS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L_1 min [mm]</td>
<td>L_4 min [mm]</td>
<td>d [mm]</td>
<td>h_o and h_n min [mm] h_o and h_n min [mm]</td>
</tr>
<tr>
<td>200</td>
<td>200</td>
<td>100</td>
<td>140</td>
<td>30</td>
</tr>
<tr>
<td>225</td>
<td>225</td>
<td>112.5</td>
<td>157.5</td>
<td>33.75</td>
</tr>
<tr>
<td>260</td>
<td>260</td>
<td>130</td>
<td>182</td>
<td>39</td>
</tr>
<tr>
<td>300</td>
<td>300</td>
<td>150</td>
<td>210</td>
<td>45</td>
</tr>
<tr>
<td>360</td>
<td>360</td>
<td>180</td>
<td>252</td>
<td>54</td>
</tr>
<tr>
<td>400</td>
<td>400</td>
<td>200</td>
<td>280</td>
<td>60</td>
</tr>
<tr>
<td>450</td>
<td>450</td>
<td>225</td>
<td>315</td>
<td>67.5</td>
</tr>
<tr>
<td>500</td>
<td>500</td>
<td>250</td>
<td>350</td>
<td>75</td>
</tr>
<tr>
<td>600</td>
<td>600</td>
<td>300</td>
<td>420</td>
<td>90</td>
</tr>
</tbody>
</table>

NOTE. In addition the distance between two holes $L_z = \max \{0.5h; 2.0d\}$

TABLE 2. GEOMETRICAL LIMITATIONS FOR RECTANGULAR HOLES IN S-BEAM AND Q-PANEL PRODUCTS.

<table>
<thead>
<tr>
<th>BEAM DEPTH h [mm]</th>
<th>DISTANCE FROM THE BEAM END L_1 min [mm]</th>
<th>DISTANCE FROM THE SUPPORT L_4 min [mm]</th>
<th>DISTANCE BETWEEN THE HOLES L_2 min [mm]</th>
<th>MAXIMUM LENGTH OF THE HOLE a_{\max} [mm]</th>
<th>MAXIMUM HEIGHT OF THE HOLE h_{\max} [mm]</th>
<th>DISTANCE FROM THE EDGES OF THE BEAM h_o and h_n min [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>200</td>
<td>100</td>
<td>300</td>
<td>260</td>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td>225</td>
<td>225</td>
<td>112.5</td>
<td>337.5</td>
<td>292.5</td>
<td>67.5</td>
<td>78.75</td>
</tr>
<tr>
<td>260</td>
<td>260</td>
<td>130</td>
<td>390</td>
<td>338</td>
<td>78</td>
<td>91</td>
</tr>
<tr>
<td>300</td>
<td>300</td>
<td>150</td>
<td>450</td>
<td>390</td>
<td>90</td>
<td>105</td>
</tr>
<tr>
<td>360</td>
<td>360</td>
<td>180</td>
<td>540</td>
<td>468</td>
<td>108</td>
<td>126</td>
</tr>
<tr>
<td>400</td>
<td>400</td>
<td>200</td>
<td>600</td>
<td>520</td>
<td>120</td>
<td>140</td>
</tr>
<tr>
<td>450</td>
<td>450</td>
<td>225</td>
<td>675</td>
<td>585</td>
<td>135</td>
<td>157.5</td>
</tr>
<tr>
<td>500</td>
<td>500</td>
<td>250</td>
<td>750</td>
<td>650</td>
<td>150</td>
<td>175</td>
</tr>
<tr>
<td>600</td>
<td>600</td>
<td>300</td>
<td>900</td>
<td>780</td>
<td>180</td>
<td>210</td>
</tr>
</tbody>
</table>

NOTE. The radius of curvature at corners of the hole shall be minimum 15 mm.

DESIGN OF KERTO LVL S-BEAMS WITH HOLES

For both round and rectangular holes, the following design criterion shall be satisfied:

$$\sigma_{t,90,d} \leq 0.85k_{\text{hole}}k_{\text{space}}k_{t,90}f_{t,90,d}$$ (11)

where $\sigma_{t,90,d}$ and $f_{t,90,d}$ are the design values for tensile stress and tensile strength perpendicular to the grain.

Length $l_{t,90}$ is calculated by

$$l_{t,90} = 0.35d + 0.5h \quad \text{round holes}$$ (12)

$$l_{t,90} = 0.5h_d + 0.5h \quad \text{rectangular holes}$$ (13)

Reduction factor $k_{t,90}$ for both round and rectangular holes is given by

$$k_{t,90} = \min \left\{ \frac{1}{(450 / h)^{0.5}} \right\}$$ (14)

Beam depth h is given in millimeters.

Reduction factor k_{hole} is calculated as follows

$$k_{\text{hole}} = \min \left\{ \frac{1}{1 - 1.5 \frac{d - 0.5h}{0.5h}} \right\} \quad \text{round holes}$$ (15)

$$k_{\text{hole}} = 1 \quad \text{rectangular holes}$$ (16)
Reduction factor k_{space} is given by

$$k_{\text{space}} = \min \left\{ \begin{array}{ll} 1 & \text{round holes} \\ 1 - 0.8 \frac{h - L_2}{h} & \text{rectangular holes} \\ 1 - 0.8 \frac{4d - L_2}{4d} & \text{round holes} \end{array} \right. \quad (17)$$

where L_2 is the depth of the hole.

The design tension load $F_{t,90,d}$ is calculated by

$$F_{t,90,d} = V_d \frac{4d}{4h} \left(3 - \frac{h_d}{h^2} \right) + 0.008 \frac{M_d}{h_r} \quad (19)$$

where V_d is the design shear force and M_d is the design moment at the hole edge. For round holes $h_d = 0.7d$.

Distance h_r is given by

$$h_r = \min \left\{ \begin{array}{ll} h_{ro} + 0.15d & \text{round holes} \\ h_{ru} + 0.15d & \text{rectangular holes} \end{array} \right. \quad (20)$$

$$h_r = \min \left\{ \begin{array}{ll} h_{ro} & \text{round holes} \\ h_{ru} & \text{rectangular holes} \end{array} \right. \quad (21)$$

In addition to the design criterion (11) the bending, shear, tensions and compression stresses of the beam shall be checked at the holes for cross-section reduced with the depth of the hole.

The design bending stress $\sigma_{b,d}$ for holes of which centre is located at the neutral axis is given by

$$\sigma_{b,d} = \left(\frac{M_d h}{I_{\text{red}}} + \sigma_{\text{add},d} \right) \quad (22)$$

where M_d is the design moment calculated at the centre of the hole and I_{red} is calculated by

$$I_{\text{red}} = \frac{b}{12} (h^3 - d^3) \quad (23)$$

For round holes bending stress $\sigma_{\text{add},d} = 0$ and for rectangular holes it is given by

$$\sigma_{\text{add},d} = \frac{M_{\text{add},d}}{W_{ro}} = \frac{V_d a / 4}{bh_{ro}^2 / 6} = \frac{3V_d a}{2bh_{ro}^2} \quad (25)$$

Design tension and compression stresses $\sigma_{t,d}$ and $\sigma_{c,d}$ in the case that the hole is located at the neutral axis of the beam are given by

$$\sigma_{t,d} = \frac{F_{t,d}}{A_{\text{red}}} \quad (26)$$

$$\sigma_{c,d} = \frac{F_{c,d}}{A_{\text{red}}} \quad (27)$$

where $F_{t,d}$ and $F_{c,d}$ are the design tension forces at the centre of the hole and A_{red} is calculated by

$$A_{\text{red}} = b(h - d) \quad \text{round holes} \quad (28)$$

$$A_{\text{red}} = b(h - h_d) \quad \text{rectangular holes} \quad (29)$$

The design shear stress $\sigma_{v,d}$ for cases where the hole is located at the beam neutral axis ($h_{ro} = h_{ru}$) is given by

$$\sigma_{v,d} = 1.5 \frac{V_d}{A_{\text{red}}} \quad (30)$$

where V_d is the design shear force at the hole edge and A_{red} is calculated with equations 28 and 29.

In case that the centre of a rectangular hole is located at the neutral axis ($h_{ro} = h_{ru}$) the design shear stress is given by

$$\sigma_{v,d} = k_t 1.5 \frac{V_d}{A_{\text{red}}} \quad (31)$$

where V_d is the design shear force at the hole edge and k_t is a factor to determine the maximum shear stress given by

$$k_t = 1.85 \left(1 + \frac{a}{h} \right) \left(\frac{h_d}{h} \right)^{0.2} \quad (32)$$

DESIGN OF KERTO LVL Q-PANELS WITH HOLES

The same design method can be used for Kerto LVL Q-panel with holes when the requirements 1-10 are fulfilled. In addition, the radius of curvature at the corners of the hole shall be at least 15 mm.

Due to the crosswise veneer structure, the tension strength perpendicular to grain of Q-panel is high enough to prevent the possible initial crack growth to propagate the failure and the design criterion for Q-panel with holes can’t be presented by formula presenting the proceeding of the cracking. Instead the bending, tension, compression and shear stresses of the beam calculated for the reduced cross-section shall be verified at the location of the holes. The stresses are calculated as given in equations 22, 26, 27, 30 and 31.
DESIGN OF NOTCHES

The stress concentrations at the notch shall be taken into account by reduction factors. The effects of them can be disregarded in the following cases:

• Tension or compression parallel to the grain.
• Bending with tension stresses at the notch, when the taper is not steeper than 1:10, that is \(i \geq 10 \), see figure 3a.
• Bending with compressive stresses at the notch, see figure 3b.

Figure 3. Bending at notch: a) tension stresses at the notch, b) compression stresses at the notch.

BEAM WITH A NOTCH ON SUPPORT

For beams with rectangular cross-sections, the shear stress at the notched support shall be calculated using the reduced depth \(h_{ef} \) (see figure 4),

\[
\tau_d = \frac{1.5V}{b \cdot h_{ef}} \leq k_v \cdot f_{v,d}
\]

(33)

where \(k_v \) is the reduction factor defined as follows:

Beams, notched at the opposite side to the support (see figure 4b):

\[k_v = 1 \]

(34)

Beams, notched at the same side to the support (see figure 4a):

\[
k_v = \min \left\{ \frac{1}{k_n \left(1 + \frac{1.1i^{1.5}}{\sqrt{h}}\right)} \right\}
\]

\[k_v = \min \left\{ \frac{1}{\sqrt{h} \left(\sqrt{\alpha(1 - \alpha)} + 0.8 \frac{x}{h} \left(1 - \alpha^2\right)\right)} \right\}
\]

(35)

where

- \(i \) is the notch inclination (see figure 4a)
- \(h \) is the beam depth (mm)
- \(x \) is the distance from line of action of the support reaction to the corner of the notch
\[\alpha = \frac{h_{ef}}{h} \] (36)

\[k_n = \begin{cases} 6 & \text{Kerto LVL S-beam} \\ 16 & \text{Kerto LVL Q-panel} \end{cases} \] (37)

The shear stress capacities for Kerto LVL products are:

\[f_{v,0,\text{edge},k} = 4.2 \text{ N/mm}^2 \quad \text{Kerto LVL S-beam} \]

\[f_{v,0,\text{edge},k} = 4.5 \text{ N/mm}^2 \quad \text{Kerto LVL Q-panel} \]

On support, the design shear stress is calculated by:

\[f_{v,0,\text{edge},d} = \frac{k_{\text{mod}} \cdot f_{v,0,\text{edge},k}}{\gamma_M} \] (38)

Design shear force capacity \(V_k \) is given by:

\[V_k = k_v \cdot f_{v,0,\text{edge},k} \cdot b \cdot h_{ef} \] (39)

In tables 3 and 4 are given examples of the shear force capacities of notched S-beams and Q-panels.

TABLE 3. THE SHEAR FORCE CAPACITY \(V_k \) [kN] OF KERTO LVL S-BEAMS WITH DIFFERENT NOTCH DEPTHS AND INCLINATIONS (FIGURES 3 AND 4). DISTANCE FROM THE SUPPORT LINE TO THE EDGE OF THE NOTCH (\(x \)) IS 100 MM.

<table>
<thead>
<tr>
<th>NOTCH DEPTH</th>
<th>50 mm</th>
<th>100 mm</th>
<th>(b / 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam size (b x h)</td>
<td>(V_k) without notch</td>
<td>(i = 0)</td>
<td>(i = 3)</td>
</tr>
<tr>
<td>51 x 200</td>
<td>27.9</td>
<td>11.3</td>
<td>15.9</td>
</tr>
<tr>
<td>45 x 260</td>
<td>32.0</td>
<td>15.3</td>
<td>20.7</td>
</tr>
<tr>
<td>45 x 300</td>
<td>36.9</td>
<td>18.9</td>
<td>25.2</td>
</tr>
<tr>
<td>51 x 300</td>
<td>41.8</td>
<td>21.5</td>
<td>28.5</td>
</tr>
<tr>
<td>45 x 360</td>
<td>44.3</td>
<td>24.6</td>
<td>32.0</td>
</tr>
<tr>
<td>51 x 400</td>
<td>55.8</td>
<td>32.3</td>
<td>41.5</td>
</tr>
<tr>
<td>57 x 450</td>
<td>70.1</td>
<td>42.3</td>
<td>53.7</td>
</tr>
<tr>
<td>75 x 500</td>
<td>102.5</td>
<td>63.8</td>
<td>80.2</td>
</tr>
</tbody>
</table>

TABLE 4. THE SHEAR FORCE CAPACITY \(V_k \) [kN] OF KERTO LVL Q-PANELS WITH DIFFERENT NOTCH DEPTHS AND INCLINATIONS (FIGURES 3 AND 4). DISTANCE FROM THE SUPPORT LINE TO THE EDGE OF THE NOTCH (\(x \)) IS 100 MM.

<table>
<thead>
<tr>
<th>NOTCH DEPTH</th>
<th>50 mm</th>
<th>100 mm</th>
<th>(b / 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam size (b x h)</td>
<td>(V_k) without notch</td>
<td>(i = 0)</td>
<td>(i = 3)</td>
</tr>
<tr>
<td>51 x 200</td>
<td>30.6</td>
<td>23.0</td>
<td>23.0</td>
</tr>
<tr>
<td>45 x 260</td>
<td>35.1</td>
<td>28.4</td>
<td>28.4</td>
</tr>
<tr>
<td>45 x 300</td>
<td>40.5</td>
<td>33.8</td>
<td>33.8</td>
</tr>
<tr>
<td>51 x 300</td>
<td>45.9</td>
<td>38.3</td>
<td>38.3</td>
</tr>
<tr>
<td>45 x 360</td>
<td>48.6</td>
<td>41.9</td>
<td>41.9</td>
</tr>
<tr>
<td>51 x 400</td>
<td>61.2</td>
<td>53.6</td>
<td>53.6</td>
</tr>
<tr>
<td>57 x 450</td>
<td>77.0</td>
<td>68.4</td>
<td>68.4</td>
</tr>
<tr>
<td>75 x 500</td>
<td>112.5</td>
<td>101.3</td>
<td>101.3</td>
</tr>
</tbody>
</table>